Ordered processing of the human immunodeficiency virus type 1 GagPol precursor is influenced by the context of the embedded viral protease.

نویسندگان

  • Steven C Pettit
  • Jose C Clemente
  • Jennifer A Jeung
  • Ben M Dunn
  • Andrew H Kaplan
چکیده

Ordered and accurate processing of the human immunodeficiency virus type 1 (HIV-1) GagPol polyprotein precursor by a virally encoded protease is an indispensable step in the appropriate assembly of infectious viral particles. The HIV-1 protease (PR) is a 99-amino-acid enzyme that is translated as part of the GagPol precursor. Previously, we have demonstrated that the initial events in precursor processing are accomplished by the PR domain within GagPol in cis, before it is released from the polyprotein. Despite the critical role that ordered processing of the precursor plays in viral replication, the forces that define the order of cleavage remain poorly understood. Using an in vitro assay in which the full-length HIV-1 GagPol is processed by the embedded PR, we examined the effect of PR context (embedded within GagPol versus the mature 99-amino-acid enzyme) on precursor processing. Our data demonstrate that the PR domain within GagPol is constrained in its ability to cleave some of the processing sites in the precursor. Further, we find that this constraint is dependent upon the presence of a proline as the initial amino acid in the embedded PR; substitution of an alanine at this position produces enhanced cleavage at additional sites when the precursor is processed by the embedded, but not the mature, PR. Overall, our data support a model in which the selection of processing sites and the order of precursor processing are defined, at least in part, by the structure of GagPol itself.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resistance mechanism of human immunodeficiency virus type-1 protease to inhibitors: A molecular dynamic approach

Human immunodeficiency virus type 1 (HIV-1) protease inhibitors comprise an important class of drugs used in HIV treatments. However, mutations of protease genes accelerated by low fidelity of reverse transcriptase yield drug resistant mutants of reduced affinities for the inhibitors. This problem is considered to be a serious barrier against HIV treatment for the foreseeable future. In this st...

متن کامل

Molecular detection of proteolytic activity of human parechovirus 2A protein by gene expression

  Parechoviruses form one of the nine genera in the picornaviridae family, and include two human pathogens: Human parechovirus type1 and 2 (Hpev1 and Hpev2). The genome of picornaviruses encodes a single polyprotein, which undergoes a cleavage cascade performed by virus encoded proteases to give the final virus proteins. The primary cleavage occurs by 2A protein and this step is critical for vi...

متن کامل

Effects of Sodium Valproate on the Replication of Herpes Simplex Virus Type 1: An in Vitro Study

Background: Sodium valproate, an anticonvulsant drug, is reported to stimulate Human Immunodeficiency Virus type 1 and Human cytomegalovirus replication. Since epileptic patients undergoing sodium valproate therapy may suffer from various virus infections, the effect of this drug on replication of viruses especially those affecting neuronal tissues such as Herpes simplex virus type 1 is worthy ...

متن کامل

A Truncated Nef Peptide from SIVcpz Inhibits the Production of HIV-1 Infectious Progeny

Nef proteins from all primate Lentiviruses, including the simian immunodeficiency virus of chimpanzees (SIVcpz), increase viral progeny infectivity. However, the function of Nef involved with the increase in viral infectivity is still not completely understood. Nonetheless, until now, studies investigating the functions of Nef from SIVcpz have been conducted in the context of the HIV-1 provirus...

متن کامل

Coxsackievirus B3 protease 3C induces cell death in eukaryotic cells

Abstract: Coxsackievirus B3 (CVB3) is the most common agent known to cause viral myocarditis. The viral genome encodes a single polyprotein that is cleaved to produce several proteins by virally encoded proteases. Most of this proteolytic processing is catalyzed by a cysteine protease called 3C. The 3C protease plays major role in viral replication and cellular damage. To understand the mecha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of virology

دوره 79 16  شماره 

صفحات  -

تاریخ انتشار 2005